This is the right direction for Python packaging, especially for GPU-heavy workflows. Two concrete things I'm excited about: 1) curated, compatibility-tested indices per accelerator (CUDA/ROCm/CPU) so teams stop bikeshedding over torch/cu* matrixes, and 2) making metadata queryable so clients can resolve up front and install in parallel. If pyx can reduce the 'pip trial-and-error' loop for ML by shipping narrower, hardware-targeted artifacts (e.g., SM/arch-specific builds) and predictable hashes, that alone saves hours per environment. Also +1 to keeping tools OSS and monetizing the hosted service—clear separation builds trust. Curious: will pyx expose dependency graph and reverse-dependency endpoints (e.g., "what breaks if X→Y?") and SBOM/signing attestation for supply-chain checks?